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Abstract

In this report the performance and limitations of subspace methods for system identification under noisy environments
are studied.
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1. Introduction

Traditional input-output methods for system identi-
fication such as prediction error methods(PEMs) or In-
trumental variable methods(IV) do not deal satisfactorily
with MIMO systems (Katayama (2006)).Input-output me-
thods are based on optimization techniques, which can get
stuck in local minima, not finding global solutions.
Alternatively there are the subspace identification methods
(SIMs), which are based on algebra properties and ma-
trices decomposition such as SVD. Most SIMs fall into the
unifying theorem (Van Overschee and De Moor (1995))
among which are canoncial variate analysis(CVA), N4SID
Van Overschee and De Moor (1994) and MOESP Verhae-
gen and Dewilde (1992).
Another attractive advantage of SIMs are the state space
form which is very convenient for estimation, filtering, pre-
diction and control. However SIMs methods count with se-
veral drawbacks. In general the estimates of SIMs are not
as accurate as input-output methods. Moreover, it is not
until recently which SIMs are suitable for closed-loop iden-
tification, necessary or many applications (Qin (2006)).
The structure of the report is as follow. In the section 2,
the notation and assumptions are presented. In the section
3 an overview of the subspace algorithms is explained. In
sections 4,5 and 6 the N4SID algorithm is explained for a
deterministic, stochastic and deterministic-stochastic sys-
tems, respectively. Finally in section 7, experimental re-
sults are discussed for each of the aforementioned cases.

2. Notation and Assumptions

In this section we introduce the notation of the Hankel
matrices, extended observability matrix, reversed contro-
lability matrix et.al. Hankel matrices play and important
role in the subspace identification methods. These matrices

can be build using the input-output data. Input Hankel
matrices are defined as :

U0|2i−1 :=



u0 u1 u0 . . . u0
u1 u2 u0 . . . u0
. . . . . . . . . . . . . . .
ui−1 ui ui+1 . . . ui+j−2
ui ui+1 ui+2 . . . ui+j−1
ui+1 ui+2 ui+3 . . . ui+j

. . . . . . . . . . . . . . .
u2i−1 u2i u2i+1 . . . u2i+j−2


:=

(
U0|i−1
Ui|2i−1

)
:=

(
Up

Uf

)

U0|2i−1 :=



u0 u1 u0 . . . u0
u1 u2 u0 . . . u0
. . . . . . . . . . . . . . .
ui−1 ui ui+1 . . . ui+j−2
ui ui+1 ui+2 . . . ui+j−1
ui+1 ui+2 ui+3 . . . ui+j

. . . . . . . . . . . . . . .
u2i−1 u2i u2i+1 . . . u2i+j−2


:=

(
U0|i

Ui+1|2i−1

)
:=

(
U+
p

U−f

)
where :
� The number of block rows, i, is defined by the user.

It should be defined larger than the maximum order
of the system one want to identify.

� The number of columns, j is defined such as all
the sampled data is used. This implies that j =
s− 2i+ 1, where s is the number of samples.

� The subscripts in U0|i, Ui|2i−1, Ui|2i−1 indicate the
first and last element in the first column of the
Hankel matrix. The subscript "p" and "f" indicates
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"past" and "future". This definition of past and fu-
ture data is somehow loose, since in both sides we
find shared data. However, it is useful for explaining
the algorithm.

The output block Hankel matrices, Yi|2i−1, Yp, Yf are
defined in the same way that the input. The block Hankel
Matrix, Wp, consist on the inputs and outputs :

Wp =

(
Up

Yp

)
The state space sequence which the system have follow

during the sequence of input-output is defined as :

Xi :=
(
xi xi+1 . . . xi+j−2 xi+j−1

)
∈ Rnxj

the subscript "i" indicates the first element in the state
space sequence.
The extended (i>n) observabilty matrix is defined as :

Γi :=


C
CA
CA2

. . .
CAi−1


We assume that A,C to be observable, which implies

that the rank of Γi is n. The reversed extended controlla-
bility matrix, ∆i, is defined as :

∆i :=
(
Ai−1B Ai−2 . . . AB B

)
∈ Rnxmi

We assume that the pair A,B, are controllable. The lower
triangular Toepliz matrix, Hi is defined as :

Hi :=


D u1 u0 . . . 0
CB D u0 . . . 0
CAB CB D . . . 0
. . . . . . . . . . . . . . .

CAi−2B CAi−3B CAi−4B . . . D


3. Algorithm overview and Unifying Theorem

The unifying theorem Van Overschee and De Moor
(1995) established a framework for most of the subspace
methods. Most of the subspace methods such as CVA,
MOESP or N4SID, consist in two steps. In the first step a
certain characteristic subspace is calculated directly from
the input-output data. This subspace finds to be the exten-
ded observability matrix, Γi. We can also infer the order
of the system, n, which is equal to the dimension of Γi.
The aforementioned subspace algorithms coincide on this
first step.
However, differences are found in the second step which is
getting the system matrices : A,B,C and D. N4SID, the

preferred algorithm during this report, makes a recons-
truction of state space sequence, Xi, which the system fol-
low during the input-output sequence. Then the system
matrices follow directly. Given the following system, the
algorithms flow is presented in Figure 1.

xk+1 = Axk +Buk + wk

yk = Cxk +Duk + vk
(1)

with

E
[(wk

vk

)(
wk vk

) ]
=

(
Q S
ST R

)
δ“0 (2)

Figure 1: SIDs algorithms flow

4. Deterministic Systems

4.1. Problem description
Given : s measurements of input uk ∈ Rm and output

yk ∈ Rl generated by the pure deterministic system :

xk+1 = Axk +Buk

yk = Cxk +Duk
(3)

we need to determine the order of the system, n, and
the system matrices A ∈ Rnxn, B ∈ Rnxm, C ∈ Rlxn, D ∈
Rlxm.

4.2. Geometric properties
Thanks to the Hankel block matrices defined in the no-

tation section we can define the following system of equa-
tions :

Yp = ΓiXp +HiUp (4a)
Yf = ΓiXf +HiUf (4b)

Xf = AiXp + ∆iUp (4c)
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The vectors in the row space of Yf , which is known
data, are obtained as a sum of linear combinations of vec-
tors in the row space of Uf , also known, plus a linear com-
binations of the row space of the state space sequence Xf .
By means of oblique projections of this Hankel matrices,
the state space sequence and the extended observaiblity
matrix can be found, as explained the the next section.
These geometrical properties are shown in the Figure 8

Figure 2: Oblique projection of the output

4.3. Main theorem
Under the assumptions that :
� The input uk is persistently exiting of order 2i (Lung

(1987))
� The intersection of the row space of Uf (future in-

puts) and the row space of Xp ( the past states) is
empty.

And with Oi defined as the oblique projection :

Oi := Yf/Uf
Wp (5)

which means the oblique projection of the row space of
Yf over the row space of Wp along the direction Uf . We
define the SVD decomposition of Oi as :

O = USV T (6)

then we have :

1. The matrix Oi is equal to the product of the exten-
ded observability matrix and the states :

Oi = ΓiXf (7)

2. The order of the system is equal to the number of
singular values in the SVD decomposition different
from zero.

3. The extended observability matrix Γi is equal to :

Γi = US1/2 (8)

4. The part of the state sequence Xf can be recovered
from :

Xf = S1/2V T (9)

The main theorem explained in this section is the com-
mon denominator for most of the subspace methods which
allow to complete the first step : calculating n ,Γi and Xf .
Even though that the theorem suffer from some modifica-
tions in the stochastic case, the underlying idea of projec-
tions over Hankel matrices is maintained. The proofs can
be found at (Van Overschee and De Moor (2012))

Figure 3: Oblique projection of Yf over Wp

4.4. Computing the System Matrices
With same proof as in the main theorem the following

holds :

Oi−1 := Y −f /U−
f
W+

p Γi−1Xi+1 (10)

and Xi+1 is calculated as :

Xi+1 = Γ†i+1Oi−1 (11)

With just the input-output data we have been able to
calculate Xi+1 and Xi. Now it is possible the build the
augmented system :

(
Xi+1

Yi|i

)
︸ ︷︷ ︸
known

=

(
A B
C D

)(
Xi

Ui|i

)
︸ ︷︷ ︸
known

(12)

Note how the system matrices can be compute as a
linear set of equations in one step. Here conclude the al-
gorithm explanation for a deterministic system.

5. Stochastic Systems

5.1. Problem description
In this section,the state space representation of a sto-

chastic system will be driven based on the available out-
put data.The stochastic subspace problem can be illustra-
ted by Figure 4 .In this problem,only the output data is
measured and the states of system are unknown,while the
states will be calculated as a result of subspace system
identification algorithm.

Given : N sample of output yk ∈ <l generated by the
unknown stochastic system with unknown order of n :

xk+1 = Axk + wk
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Figure 4: A LTI stochastic system.The symbol ∆ represents a delay.

yk = Cxk + vk

where the mean of stochastic vector wk and vk are zero,the
covariance matrix :

E[

(
wp

vp

)(
wT

p vTp
)
] =

(
Q S
ST R

)
Determine :
� The stochastic system order
� The system matrices A,C,Q,S,R such that the se-

cond moment of the model output and given data
are equal.

5.2. Properties of the stochastic systems
In order to use the subspace Identification,some as-

sumption need to be assumed,firstly the state process should
be stationary which implies that the mean value and co-
variance matrix of states must converge to the finite va-
lue.For example,

E[xk] = 0,

E[xk(xk)T ] = Σ,

Where the state covariance matrix Σ is not function of time
instance k.Here another observation is that the system ma-
trix A need to be stable which means the eigenvalues of
the matrix are strictly inside the unit circle in Z plane.

Moreover,the state sequence is independent(uncorrelated)from
both white noises wk and vk.The mathematical description
coul be written as below :

E[xk(vk)T ] = 0,

E[xk(wk)T ] = 0,

Now,the Lyapunov equation for state update is :

E[xk+1(xk+1)T ] = Σ,

= E[(Axk + wk)(Axk + wk)T ]

= AE[xk(xk)T ]AT + E[wk(wk)T ]

= AΣAT +Q

and now the output covariance(correlation) matrix is :

Λi = E[yk+i(yk)T ]

and the Λ0 :

Λ0 = E[yk(yk)T ]

= E[(Cxk + vk)(Cxk + vk)T ]

= CE[xk(xk)T ]CT + E[vk(vk)T ]

= CΣCT +R

and the correlation between state update and current mea-
surement :

G = E[xk+1(yk)T ],

= E[(Axk + wk).(Cxk + vk)T ]

= AE[xk(xk)T ]CT + E[wk(vk)T ]

= AΣCT + S

5.3. GEOMETRIC PROPERTIIES OF STOCHASTIC SYS-
TEMS

In this section the main theorem of the stochastic sub-
space identification problem will be illustrated.

5.4. Main Theorem
Base on this theorem,row space of state sequence X̂i

and the extended observability matrix Γi directly can be
computed from the given data,without having any infor-
mation about system matrices.The system matrices can
be calculated from X̂i or Γi.The procedure is depicted in
figure 5.

Figure 5: An overview of the stochastic subspace method..

Theorem of stochastic identification :
assumption :
� The process noise wk and measurement noise vk are

not zero at the same time.
� The number of samples tends to infinity j →∞
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Now the future data (Yf ) is projected to the past data
(Yp) and the result is :

Oi = Yf/Yp,

and once this matrix available the singular value decom-
position gives :

Oi =
(
U1 U2

)(S1 0
0 0

)(
V T
1

V T
2

)
= U1S1V

T
1 ,

1- and we can prove that the matrix Oi is equal to the
multiplication of the extended observability matrix and
kalman filter states :

Oi = Γi.X̂i,

2- and by utilizing the SVD the order of the system in no-
thing but the rank of the singular value matrix and simply
the number of singulars values which are not zero,and it
can be proven based on the matrices dimension match.

3- The extended observability matrix and an extended
controllability matrix ∆i are :

Γi = U1S
1/2
1 .T,

∆i = Γ+
i .Φ[Yf ,Yp].

4- The estimation of the state sequence can be found from
the SVD :

X̂i = T−1.S
1/2
1 V T

1 .

Hence by far the states and the extended observability
matrix calculated, The next is to calculate the system ma-
trices.

5.5. COMPUTING THE SYSTEM MATRICES
In this section the system matrices A,C and Q,S,R can

be calculated based on the states estimation sequence and
extended observability matrix.

There are some algorithms that systematically calcu-
late the system matrix according to the system states and
the extended observability matrix,but we pick up only one
of them and the explanation of the algorithm goes here :

stochastic algorithm :
� Solve the set of linear equation for A and C :(

ˆXi+1

Yi|i

)
=

(
A
C

)
X̂i +

(
ϕw

ϕv

)
where Yi|i is a block Hankel matrix with only one
row of the sampled data.The left side of this equa-
tion is completely known,because the state sequence

already calculated and the residual vectors
(
ϕw

ϕv

)
are known,because they can be computed from kal-
man estimator equation.Thus,the only unknowns in
this equation are the system matrices A and C,and
since the set of residuals are uncorrelated from state

sequence the natural way of solving this optimiza-
tion problem is least square method.The solution of
the cost function which tends to find the estimation
of the parameters that minimize the variance of the
prediction error.The solution is :(

A
C

)
=

(
ˆXi+1

Yi|i

)
X̂i

+

� Determine Q,S and R from :(
Q S
ST R

)
= E[

(
ϕw

ϕv

)
.
(
ϕT
w ϕT

v

)
]

� The following step need to be done in order to find
Σ,G and Λ0 :

Σ = AΣAT +Q

Λ0 = CΣCT +R

G = AΣCT + S

� Now we are able to calculate covariance of the state
estimate and stationary Kalman gain :

P = APAT +(G−APCT )(Λ0−CPCT )−1(G−APCT )T

K = (G−APCT )(Λ0 − CPCT )−1

� And the forward innovation model is :

xk+1 = Axk+1 +Kek

yk = Cxk + ek

E[ek(ek)T ] = R

5.6. Conclusion
In this chapter we identified the space state represen-

tation by using the subspace method of the stochastic sys-
tem.The states of the system and the extended observabi-
lity matrix calculated by the projection theorem by means
of the system output data and followed by calculation of
system matrices.The least square method utilized in order
to find the decision variables of cost function which are the
system parameters.The success of subspace method will be
examined at the end of the document.

5.7. COMBINED DETERMINISTIC-STOCHASTIC IDEN-
TIFICATION

In this section we will describe the subspace identifica-
tion for a system which the state space representation of
system has deterministic control input uk and both process
noise wk and measurement noise vk.We utilize the results
of the previous sections to derive the main theorem.,which
illustrates that how the Kalman states can be calculated
from the given input-output data.
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The problem statement goes here :
Combined identification problem :

Given : j measurements of the control input uk and
output yk generated by the unknown system of order n :

xk+1 = Axk+1 +Buk + wk

yk = Cxk +Duk + vk

where the process noise and measurement noise assumed
to be white the covariance matrix :

E[

(
wp

vp

)(
wT

p vTp
)
] =

(
Q S
ST R

)
Determine :

� The stochastic system order
� The system matrices A,B,C,D,Q,S,R such that the

second moment of the model output and given data
are equal.

5.8. Problem Description
combined subspace identification algorithm calculates

state space models from given input-output data.Figure
6 graphically shows the combined subspace problem with
unknown matrices.

Figure 6: A LTI combined deterministic-stochastic system with in-
put uk,output yk and statesxk,described by the matrices A,B,C,D
and covariance matrices Q,S,R.The symbol Σ illustrates a unit delay.

5.9. Notation
The system is divided in a deterministic and a stochas-

tic subsystem,and due to a linear dynamic of the system,
we can split the state(xk) and outputyk in a deterministic
and stochastic component :
xk = xdk + xsk,
yk = ydk + ysk.
The deterministic state(xdk) and output(ydk) change by means
of the deterministic inputuk on the deterministic output :

xdk+1 = Axdk +Buk

ydk = Cxdk +Duk

The stochastic state (xsk) and output(yk)driven from sto-
chastic system,which describes the effect of noise on the
system output :

xsk+1 = Axsk + wk

ysk = Cxsk + vk

The state sequence is defined as :

Xi =
(
xi xi+1 · · · xi+j−2 xi+j−1

)
The deterministic state sequence Xd

i and stochastic
state sequence Xs

i are defined as :

Xd
i =

(
xdi xdi+1 · · · xdi+j−2 xdi+j−1

)
Xs

i =
(
xsi xsi+1 · · · xsi+j−2 xsi+j−1

)
in a similar way the pas and future deterministic and

stochastic state sequences are defined as :

Xd
p = Xd

0 , Xd
f = Xd

i ,

Xs
p = Xs

0 , Xs
f = Xs

i ,

6. GEOMETRIC PROPERTIES OF COMBINED
SYSTEMS

6.1. Matrix input-output equation
The matrix input-output equations for the combined

system can be defined as following :

Theorem Combined matrix input-output equa-
tions

Yp = ΓiX
d
p +Hd

i Up + Y s
p ,

Yf = ΓiX
d
f +Hd

i Uf + Y s
f ,

Xd
f = AiXd

p + ∆d
iUp,

6.2. Main Theorem
This theorem calculates the sequence of state estima-

tion and the extended observability matrix directly from
the input-output data without having information of sys-
tem matrices.The system matrices can be computed from
X̂i and Γi.The procedure of the theorem is illustrated in
the figure 7.
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Figure 7: An overview of the combined deterministic-stochastic sub-
space identification procedure.

In order to explain the theorem there are some assump-
tions :
Assumptions :

� The deterministic control input uk is uncorrelated
with stochastic process noise wk and measurement
noise vk .

� The number of measurement tends to infinity j →
∞

� The process noise wk and vk are not zero identically.
and with Oi defined as the projection :

Oi = Yf/U
⊥
f

and the singular value decomposition :

Oi =
(
U1 U2

)(S1 0
0 0

)(
V T
1

V T
2

)
= U1S1V

T
1 ,

Then the sequence of the calculating the states and ex-
tended observability matrix is :

1- The matrix Oi is equal to multiplication of the kal-
man filter states and extended observability matrix :

Oi = Γi.X̂i

2- The order of the system is equal of the most signi-
ficant singular values,To put it simply,the minimum reali-
zation of the system is the most significant values of the
singular values,due to noise some singular values are noisy
and need to canceled out from the system because they
are not the part of the system.

3- The extended observability matrix Γi can be calcu-
lated as follow :

Γi = U1S
1/2
1 .T,

4- The estimation of the state sequence can be found
from the SVD :

X̂i = T−1.S
1/2
1 V T

1 .

By far the states and extended observability matrix
calculated and the next step is to fined the system ma-
trices.

6.3. COMPUTING THE SYSTEM MATRICES
The algorithm of finding the system matrices explained

in a brief here :
1- Calculate the projection of given data :

Oi = Yf/U
⊥
f

Oi+1 = Y −f /U
⊥
f

2- Calculate the SVD of Oi :

Oi = U1S1V
T
1 ,

3- Determine the minimum system realization by consi-
dering the most significant singular values in S matrix to
obtain U1 and S1.

4- Determine Γi and Γi−1 as :
Γi = U1S

1/2
1

Γi−1 = Γi

5- Determine the estimation of the states :

X̂i = Γ+
i .Oi

ˆXi+1 = Γ+
i−1.Oi+1

6- Solve the set of linear equations for A,B,C and D :

(
ˆXi+1

Yi|i

)
=

(
A B
C D

)(
X̂i

Ui|i

)
+

(
ϕw

ϕv

)
The only thing here is that the parameter of the linear

regression could be calculated from the least square sense.
7- And the last step is to find Q,S and R from the

kalman filter residuals :

E[

(
wp

vp

)(
wT

p vTp
)
] =

(
Q S
ST R

)
6.4. CONCLUSIONS

In this chapter we considered the subspace identifica-
tions of a combined system with both stochastic and deter-
ministic inputs.The system matrices are estimated based
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on the least square sense and having the knowledge of Kal-
man filter states and extended observability matrix.The al-
gorithm merely utilizes the input-output data to estimate
the states and extended observability matrix and follows
the instructions to reach the system matrices.The simula-
tion will be done in the experimental chapter.

7. Simulation

In this section we will perform some simulation for dif-
ferent type of the systems, as we described in previous
chapters and discuss the results and compare the results
with ARX estimation.The order of simulations are as same
as the materials presented in this report.

7.1. Deterministic simulation
Firstly We performed the deterministic simulation for

a system with ARMAX representation and the noise set
to the zero.The system description is :

A(q−1)yk = B(q−1)uk + C(q−1)ek

The Set of system parameters defined as :

A = [1,−0.98, 0.4,−0.4],

B = [0, 2],

C = [1, 0.3],

and the input stochastic assumed to be white with zero
average and variance of σ2.This is the system we will use
for driven the data and the data will use in order to es-
timate the system parameters in input-output description
with ARMAX command and also the state space descrip-
tion will be estimated base on N4SID algorithm.

In the deterministic simulation the noise variance set
to the zero and the system output is only driven based on
the deterministic PRBS control input which takes values
of -1 and 1.By applying this input to the system and mea-
suring the output we can build a data for this system and
given data will be stored in a vector.

The subspace algorithm only gives us one description of
state space representation,because the system can be writ-
ten in an infinity state space form.By using the N4SID
command we get the system matrices as following :

A =

 0, 4496 0, 0436 −0, 47
0, 8657 0, 1241 0, 0640
0, 19764 −0, 8732 0, 4062


B =

−0, 0277
0, 0172
−0, 0057



C =
(
−158, 6776 −110, 7672 84, 2580

)
D = 0

K =

0
0
0


The system representation in state space form based

on the N4SID is as below in general :

xk+1 = Axk +Buk +Kek
yk = Cxk +Duk + ek

where A is the system matrix,B is the input matrix ,
K is the Kalman gain,C is the output matrix,D is direct
input matrix and ek is the measurement noise which assu-
med to be white and uncorrelated from the states.

As it was expected the kalman gain estimated as a zero
vector because we have a deterministic system. The com-
parison between the model which is given from subspace
method and system model with defined parameter is per-
formed in order to show the accuracy of the estimation
and validation of the system matrices which estimated by
the subspace algorithm.The result of comparison is here :

Figure 8: Validation of the estimated system matrices with test data
in order to compare the real system output and estimated model
output.

It should be noted that there are 2 set of data.One set
used so as to find the system matrices namely train or es-
timation set and the second one used in order to check the
consistency and validity of the model namely test data.As
it could be expected the PRBS is a random input that un-
correlated with states and subsequently uncorrelated from
the output,as far as we perform another experiment we
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will get another state space representation which could be
transformed to the similar transfer function.

In summary,although the estimated space state of the
real system would vary in every realization,the model trans-
fer function remains same and as it could be seen the out-
put of the system and model are match in all of the samples
with probability of 100 percent.

7.2. Stochastic simulation
In this section a pure stochastic systems is examined.

The input, u, is vanished, resulting in the following ARMA
model :

A(q−1)yk = C(q−1)ek

A = [1,−0.98, 0.4,−0.4],

C = [1, 0.3],

In this case the only input to the system is the noise
which is normal distributed with a variance of 0.1. Again,
the N4SID algorithm is used to extract a state space mo-
del. The result is the following system matrices :

A =

 0, 4604 0, 2353 0.4227
−0.7648 −0.1035 0.618
0.4513 −0.382 0.623


B =

 0
−7.16−16

2.584e−16


C =

(
−9.55 0.7507 7.606

)
D =

(
0
)

K =

−2.957
1.22
−0.644


The results obtained in the B matrices can be consi-

dered as zero since the order of magnitude is e−16. This
result is expected as the simulated system had no input.
On the other hand, as opposed to the deterministic case,
the matrix K is non-zero since the processed noise is mo-
deled.

The performance of the estimation, 81% ,is reflected in
the figure 9. For assessing this performance, the estimated
system is fed with exactly the same simulated noise and
then compared with the simulated output. One can expect
to have the same performance as in the deterministic case,
since we are using a noise signal that we already know.
However, N4SID works differently for each case. Here an
optimal fitting is needed, but not in the deterministic sys-
tem.

Figure 9: Stochastic with s2 = 0.01

7.3. Combined Stochastic-Deterministic Simulation
In this section the system has two inputs,one system

is a deterministic control input and the other is the sto-
chastic input.It should be noted that the current system
identification is performed in open loop and thus there is
no correlation between control input and states and sys-
tem output.Knowing this fact,the system realization car-
ried out through a given description as :

A(q−1)yk = B(q−1)uk + C(q−1)ek

The Set of system parameters defined as :

A = [1,−0.98, 0.4,−0.4],

B = [0, 2],

C = [1, 0.3],

and the input stochastic assumed to be white with zero
average and variance of σ2.This is the system we will use
for driven the data and the data will use in order to es-
timate the system parameters in input-output description
with ARMAX command and also the state space descrip-
tion will be estimated base on N4SID algorithm.The σ2

is set to different values and the effect of noise on the es-
timation will examine in detail.

In combined system it is expected the B and K vectors
are not going to be zero,since the system output driven by
both deterministic and stochastic input with a variance
different from zero.

We performed a simulation for a given system with
PRBS deterministic input and stochastic input with σ2 =
0.01 and repeat the experiment for different value of the σ2
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to examine the effect of noise on the system estimation.It
is also assumed the level of control input is considerably
high from level of noise,and the intuition for this is that
we prefer to excite the system in direction of control input
to understand the effect of the control input on the system
output,while if the level of noise is much than control than
the existence of the control is meaningless du to the fact
the noise is able to bring the system to any position and
the level of control is not capable to change the dynamic
of the noise in direction of our objection.In other words,if
the noise variance is high,we do not have any control so
to speak and the output behave randomly.Hence,by using
this fact,we limit the noise variance up to 0.1 and perform
the subspace identification.The results are here :
σ2 = 0.01

A =

 0, 9639 0, 1688 −0, 0163
−0, 0877 −0, 2919 −0, 763
−0, 2514 0, 6055 0, 30941


B =

0, 0088
0, 0198
0, 0245


C =

(
190, 2519 11, 3890 3, 4551

)
D = 0

K =

 0, 0057
−0, 0093
0, 0098


As it can be seen there are three poles in the system

description and the order of the system in state space re-
presentation is also 3.The Kalman gain is not zero due to
noise.Another observation done to check the consistency
of estimation .The result are in figure 10.

Figure 10: compare test data and model output for s2 = 0.01

It should be noted that due to the low level of the noise

the match between model output and test data is around
90 percent of the total samples.

Another experiment performed for σ2 = 0.05
and the results are :

σ2 = 0.05

A =

 0, 9591 0, 1944 0, 0394
−0, 1091 −0, 2815 0, 72899
0, 2458 −0, 6641 0, 3139


B =

 0, 0096
0, 0221
−0, 0209


C =

(
175, 5991 13, 0678 −0, 6968

)
D = 0

K =

 0, 006
−0, 0028
−0, 0115


Hence,again the system estimated with 3 states and

due to the noise and deterministic input both B and K
matrix are not identically zero.

The comparison performed so as to examine the esti-
mation.The result in figure 11.

Figure 11: compare test data and model output for s2 = 0.05

It is expected that the level of noise affect the estima-
tion of the parameter. Because from least square sense the
optimal estimation can not in charge of the noise and thus
the number of samples which are match together is going
to be decrease which could be seen from figure refs2 = 0.05.

The last experiment have been done for variance of the
noise equal to 0.1.In this case we expect that the estima-
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tion of the system matrices affects highly with noise.Because
the level of deterministic input and noise is in some point
equal.The estimation goes here :

σ2 = 0.1

A =

 0, 9609 −0, 1631 −0, 0038
0, 0624 −0, 2528 0, 8537
−0, 2479 −0, 53590, 2564


B =

−0, 0085
0, 0166
−0, 0245


C =

(
−196, 0541 10, 4169 −4, 91893825957348

)
D = 0

K =

−0, 0056
−0, 0095
−0, 010


And the comparison between test data and model out

put shown in figure 12

Figure 12: Combined simulation with s2 = 0.1

As it Expected the fifty percent of sampled between
model and test data are coincide to each other.The reason
is that the effect of noise on the data is huge and we would
like to extract the data without noise and this task not
easy because the deterministic input and stochastic one
excite the system with a same level and the information
will spread out over the noise and deterministic direction
and extracting the true matrices is affected with noise.

8. Conclusion

In this report the subspace identification algorithm exa-
mined for different systems including deterministic,stochastic
and combined system. In all case the subspace has solu-
tion for system matrices, and the system matrices estima-
ted only base on the given data. The level of the noise will

affect the estimation, because the system matrices are the
solution of the set of liner equation which are affected by
kalman filter prediction error, and once the noise variance
is high it implies that the prediction error will increase and
that followed by the fact that the measurements are noisy
and we should rely on the model rather than the output
itself, and that is why the output from model and measu-
rements has big difference.

Individual Contribution in writing the report

In this section the parts which written by each student
explained,but this does not mean each student only study
the particular part.Both student study whole method in
detail and share the knowledge in order to have a better
understanding.The parts which written individually is as
bellow :

Iman :
1- Explanation of the Subspace identification theorem for
identifying the system matrices of a stochastic system.
2- Explanation of the Subspace identification theorem for
identifying the system matrices of a combined deterministic-
stochastic system.
3- Simulation of the subspace identification algorithm with
N4SID for a deterministic system .
4- Simulation of the subspace identification algorithm with
N4SID for a combined deterministic-stochastic system .
5- Explanation of the conclusion section .

Arturo :
1- Explanation of the Introduction section.
2- Explanation of the Notion and Assumptions section .
3- Explanation of the Unifying theorem and overview of
the subspace algorithms.
4- Explanation of the Subspace identification theorem for
identifying the system matrices of a deterministic system.
5- Simulation of the subspace identification algorithm with
N4SID for a stochastic system .
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