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Abstract
In a Gaussian distributions, conditional independence between variables cor-

respond to zero entries in the inverse covariance matrix. However, estimating
the inverse from samples under the assumption of sparsity is not straight for-
ward. For small matrices an fixed sparse pattern, it can be calculated as a con-
vex optimization problem. Nonetheless, for high dimensional data and general
sparse patterns the problem becomes intractable and heuristics are needed, such
as lasso regularization. Another associated problem of with high dimensional
data, which accounts for most of the data applications nowadays, is the problem
of storage and computation time. In this project explore the distributed algo-
rithm, Alternating Directions Method of Multipliers(ADMM) for the inverse
covariance selection problem thanks to its decomposability nature and finally
we show some applications for political voting analysis in the US senate.

1 Alternating Direction Method of Multipliers
The main foundations of ADMM are the dual ascent method for solving convex opti-
mization problems, dual decomposition for decomposing the objective and constraint
functions and the method of multipliers which guarantee differentiability under mild
conditions.

1.1 Dual Ascent
Given the following convex optimization problem with linear constraints,

minimize f(x)

subject to Ax = b
(1.1)

with variables x ∈ Rn, where A ∈ Rm×n, and f : Rn → R is convex. The lagrangian,

L(x, y) = f(x) + yT (Ax− b)

and the dual function,

g(y) = inf
x
L(x, y) = −f ∗ (−AT y)− bT y

where y ∈ Rm is the Lagrangian multiplier, and f∗ is the convex conjugate of f. The
dual problem then becomes

minimize g(y)

if strong duality holds, then we can recover the solution of the primal problem,x∗
from the the dual problem solution, y∗ as

x∗ := minimizeL(x, y∗)

the dual ascent method consists on taking steps towards the dual function gradient
and updating the primal solution iteratively,

xk+1 := argmin
x

L(x, yk) (1.2)

yk+1 := yk + αk(Axk+1 − b) (1.3)
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where αk > 0 is the step size, which control how fast the solution converges, but in
case of too high value it might lead to convergence problems. The names dual ascent
comes from the fact that g(y) increases in every step. However, some conditions must
hold to guarantee convergence and functioning of the algorithm. For instance, g(y)
must be differentiable in order to evaluate the it gradient, and dual subgradient method
should be used instead. Another exampel is the case when f(x) is a non-zero affine
function, in which case the update (1.2) would fail since the Lagrangian is unbounded
below for most of y and x.

1.2 Dual decomposition
The strength of dual ascent is that it can lead to a decentralized algorithm when the
objective and constraint functions are separable,

f(x) =

N∑
i=1

fi(xi) Ax =

N∑
i=1

Aixi

where x = (x1, x2, ...xN ) and xi ∈ Rni . Then the Lagrangian looks like

L(x, y) =

N∑
i=1

fi(xi) + yT (Aixi − b)− (1/N)yT b

meaning that the dual ascent method consist in N primal variables updates and one
dual step as

xk+1
i := argmin

x
Li(xi, y

k) (1.4)

yk+1 := yk + αk(Axk+1 − b) (1.5)

1.3 Method of multipliers
As already stated, dual ascent assume very strict conditions on the initial problem
such as strict convexity and finiteness of f . In order to overcome some of this issues
the augmented Lagrangian is introduced,

Lρ(x, y) = f(x) + yT (Ax− b) + (ρ/2)||Ax− b||22
where ρ is the penalty parameter. The augmented Lagrangian is equivalent to solve
the transformed initial problem

minimize f(x) + ||Ax− b||22
subject to Ax = b

(1.6)

The problem (1.6) is clearly equivalent to the original problem, (1.1), since the residual
Ax− b is zero at the optimal feasible point. This new formulation brings the benefit
of differentiability under rather mild conditions on the original problem. The new
dual functions is gρ(y) = infLρ(x, y). This leads to the method of multipliers

xk+1 := argmin
x

Lρ(x, y
k) (1.7)

yk+1 = yk + ρ(Axk+1 − b) (1.8)

In practice the learning parameter could be anything, instead of ρ, but it is motivated
for convergence reasons. The original problem posses the following primal and dual
feasibility conditions

Ax∗ − b = 0, ∇f(x∗) +AT y∗ = 0,

Now, if we look at the minimization step (1.7) it minimize the augmented Lagrangian,Lρ(x, yk)
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0 = ∇xL(xk+1, yk)

= ∇xf(x) + yTA+ ρ(Axk+1 − b)
= ∇xf(xk+1) +AT yk+1

making every step dual feasible. However the method of multipliers has a drawback.
Even thought that f is separable, its augmented Lagrangian, Lρ, is not. This problem
is addressed by the Alternating Direction Method of Multipliers

1.4 ADMM algorithm
ADMM mix the decomposability of dual ascent with the superior convergence prop-
erties of method of multipliers. Given a problem as

minimize f(x) + g(z)

subject to Ax+Bz = c
(1.9)

The associated augmented Lagrangian would be,

Lρ(x, z, y) = f(x) + g(z) + yT (Ax+Bz − c) + (ρ/2)||Ax+Bz − c||22
If we would intended to apply the method of multipliers the iteration updates would
look like,

(xk+1, zk+1) := argmin
x

Lρ(x, z, y
k)

yk+1 := yk + ρ(Axk+1 +Bzk+1 − c)

where x and z are jointly optimized. However we an take an additional step and
optimize each of the variables separately.

xk+1 := argmin
x

Lρ(x, z
k, yk) (1.10)

zk+1 := argmin
z

Lρ(x
k+1, z, yk) (1.11)

yk+1 := yk + ρ(Axk+1 +Bzk+1 − c) (1.12)

this is finally the Alternating Direction Method of Multipliers. The alternating ac-
counts for the fact that x and z can be minimized in an alternating or sequential
fashion.

1.4.1 Scaled form

The ADMM updates can be reformulated in a slightly different form which usually
lead to shorter equations. If we define the residual as r = Ax+Bz−c and u = (1/ρ)y
as the scaled dual variable, the augmented Lagrangian of the problem (1.9) follows as

Lρ(x, z, u) = f(x) + g(z) + (ρ/2)||r + u||22 − (ρ/2)||u||22
and then the scaled form of ADMM

xk+1 := argmin
x

(
f(x) + (ρ/2)||Ax+Bzk − c+ uk||22

)
(1.13)

zk+1 := argmin
z

(
g(z) + (ρ/2)||Axk+1 +Bz − c+ uk||22

)
(1.14)

yk+1 := yk + ρ(Axk+1 +Bzk+1 − c) (1.15)
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1.4.2 Optimality conditions and Stopping criterion

The optimality conditions for the problem 1.9 are primal feasibility,

Ax∗ +B∗z − c = 0 (1.16)

and dual feasibility,

0 ∈ ∂f(x∗) +AT y∗ (1.17)

0 ∈ ∂g(z∗) +BT y∗ (1.18)

for the same reasons as explained in the method of multipliers the zk+1 and yk+1

always satisfy (1.18) so we have to only look at (1.17) and (1.16). Since xk+1 minimize
Lρ(x, z

k, yk) by definition we have

0 ∈ ∂f(xk+1) +AT yk + ρAT (Axk+1 +Bzk − c)
= ∂f(xk+1) +AT (yk + ρrk+1ρB(zk − zk+1))

= ∂f(xk+1) +AT yk+1ρATB(zk − zk+1)),

ρATB(zk − zk+1) = ∂f(xk+1) +AT yk+1)

So we can define

sk+1 = ρATB(zk − zk+1)

as the dual residual for (1.17) and rk+1 = Axk+1 +Bzk+1 − c as the primal residual
for (1.16).

2 Inverse Covariance Selection
Zero entries in the inverse covariance matrix correspond to conditional independence
of random variables, i.e. knowing the value of one variable do not give information
about other knowing the rest. Non-zero entries in the covariance matrix in the case
of conditional independence might be contaminated by other variables correlations.

Estimating the inverse covariance for small matrices and fixed sparse patterns is a
tractable convex optimization problem. However, when a priori it is not known which
variables are conditionally independent it becomes a combinatorial problem which
scales exponentially with n. Lasso regularization is an heuristic which address this
issue.

2.1 Sparse regularization
Suppose the case where we have samples from a zero mean Gaussian distribution,

xi ∼ N (0,Σ), i = 1, 2, ..., N

which computational covariance matrix will be denoted as C. One way to estimate
the inverse covariance is by means of the Kullback-Leibler divergence which is defined
as

DKL(N1||N0) =
1

2

(
tr(Σ−1

0 Σ1) + (µ0 − µ1)TΣ−1
0 (µ0 − µ1)− k + ln

(detΣ0

detΣ1

))
for two k-dimensional Gaussian distributions. So if we define S = Σ−1

1 and X = Σ0

and minimize the DKL respect to X we have

minimize Tr(CX)− lndetX + cte (2.1)

after assuming that both distributions have the same mean. Since the Kullback
divergence is a measure on how similar two distributions are, after the minimization
problem we would have C = X−1. Therefore, X is the inverse covariance estimation.
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Nonetheless what we are trying to estimate is a sparse general pattern on X which
can be introduced through Lasso regularization

minimize Tr(CX)− lndetX + λ|X|1 (2.2)

2.2 ADMM formulation
The same problem can be expressed as constrained optimization problem with two
variables,

minimize Tr(SX)− lndetX + λ|Z|1
subject to X − Z = 0

(2.3)

now, following the ADMM framework it can be solved iteratively with the updates

Xk+1 := argmin
x

(
Tr(CX)− lndetX + (ρ/2)||X − Zk + Uk||2F

)
Zk+1 := argmin

z

(
λ||Z||1 + (ρ/2)||X − Zk + Uk||2F

)
Uk+1 := Uk +Xk+1 + Zk + 1

the updates can be simplify even further. For example the there exists a closed
form solution for the z-minimization step which corresponds to a soft thresholding
operation [1, p. 23]

Zk+1
ij = Sλ/ρ(X

k+1
ij + Ukij)

but also the x-minimization step can be expressed as a closed from solution [2, p. 47]

Xk+1 = QX̂QT

where Q comes from the orthogonal eigenvalue decomposition of ρ(Zk − Uk) − S =
QΛQT and X̂ is a diagonal matrix with the form,

X̂ii =
λi +

√
λ2i + 4ρ

2ρ

which turns out to be a very cheap computational algorithm, where most of the effort
is calculating an eigenvalue decomposition.

2.2.1 Stopping criteria

The algorithm is iterated until the primal and dual residuals

Rk+1 = X − Z Sk+1 = ρ(Zk − Zk + 1)

are less than the primal and dual tolerance

εprimal > ||Rk+1||2 εdual > ||Sk + 1||2
where εprimal and εdual are derived from the optimality conditions in the Annex

εprimal = εabs
√
n+ εrel max(||X||2, ||Z||2) (2.4)

εdual = εabs
√
p+ εrel||ST −X−T + ρU ||2 (2.5)

where εabs and εrel are the absolute and relative tolerance for controlling accuracy of
the solution.
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3 Results
Data from the US senate government [3] has been analyzed in order to find depen-
dencies among politician during voting processes. The dataset consists on all the
2017 senate voting records which has 191 samples of 100 politicians stored in a vec-
tor X ∈ R100, where the first 46 entries are democrat members, the 2 following are
independent senators and the rest 52 are republicans.

The computational covariance matrix has been fed to the ADMM algorithm for
different regularization problems. In the figure 1 is represented the sparse pattern
found for different values of λ, where white space means a zero entry. In one extreme,
for λ = 0.3 we see a diagonal matrix, where each politician vote completely indepen-
dently. In the other extreme for λ = 0.001 we see a dense inverse covariance matrix,
where everyone depends on everyone else. However, for λ = 0.05 and 0.01 density is
only present in first and fourth quadrant. This results suggest, as expected, that each
politician vote depends on what their party fellows are voting.

Figure 1: By order, sparse patterns for λ=0.3, 0.05, 0.01 and 0.001

The absolute and relative tolerance in (2.4) and (2.5) for all the experiments have
been set to 10−3. The figure 2 shows convergence of primal and dual residuals for
different regularization values and fixed ρ. For λ = 0.3 it takes more time, since the
relative tolerance is smaller, while for λ = 0.001 it takes longer since the residuals
decrease slower.

Regularization(λ) 0.3 0.1 0.05 0.01 0.001
Iterations 224 47 40 96 152

Table 1: Number of iterations depending on λ
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Figure 2: Primal and Dual residuals convergence against λ for fixed ρ

The learning parameter, ρ, does not have impact on the accuracy of the solution
but on the convergence speed. High values will decrease the dual function faster but
the penalty for breaking primal feasibility will be high. In the figure ?? we can see
that the optimal point for λ = 0.02 is around 0.012.

Figure 3: Primal residuals convergence against ρ for λ = 0.02
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Figure 4: Number of iterations against ρ for λ = 0.02

4 Annex
Proof of dual tolerance for (2.3). By optimality conditions we know that∇xL(X,Zk, Uk) =
0. Hence,

0 = CT − (Xk+1)−T + ρ(Xk+1 − Zk + Uk)

= CT − (Xk+1)−T + ρ(Xk+1 − Zk + Uk) + ρZk+1 − ρZk+1

= CT − (Xk+1)−T + ρ(Rk+1 + Uk) + ρ(Zk+1 − Zk)

= CT − (Xk+1)−T + ρUk+1 + ρ(Zk+1 − Zk)

ρ(Zk+1 − Zk) = CT − (Xk+1)−T + ρUk+1

ρSk+1 = CT − (Xk+1)−T + ρUk+1

which demonstrate the choice of (2.5).
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