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1 Introduction

This project analyses the work of [ZWY14] which presents several ODE models for viral blips in
HIV(Human Immunodeficiency Virus)-infections. After providing a biological overview in section 2.1
we focus on one of the models especially. We clarify how a homoclinic bifurcation could explain the
blips in section 2.3. The authors say that the viral blips are not due to a homoclinic bifurcation because
no homoclinic orbit can exist. We explain in section 2.5 how the authors prove this nonexistence for
the model. In section 4 we explain how we prove the nonexistence for certain choices of the parameters
and in section 3 we show where we - in contrast to the authors - do find a homoclinic orbit numerically.

2 Modelling

2.1 The underlying biology

Viral blips are sudden peaks in the viral load while the load is a measure for the quantity of the virus
per unit of volume1. The HI-virus befalls the CD4+-T cells in particular, and their infection can
be productive or latent. In the productive state, the CD4+-T cells produce new viral particles, thus
increasing the viral load. In the latent state, the infected cells don’t produce new viral particles 2.

The 3-D-model in 3.1 and 3.2.1 of [ZWY14] is given by

dX

dτ
= 1−DxX − (B + AR

R+C )XY C = 3.94 · 10−4 (1)

dY

dτ
= (B + AR

R+C )XY − Y (2)

dR

dτ
= Y −DrR Dr = 1000 (3)

where X and Y are the populations of uninfected and infected CD4+-T cells and R is an amount
of general ”damage caused by the infection”. The model uses the concept of a so-called infectivity
function B+ AR

R+C , which contributes positively to the growth rate of the infected cells and negatively
to the growth rate of the uninfected cells. Moreover, the model has the uninfected cells produced
regardless of other influences, at a constant production rate (the 1 in eqn. 1) Then they let the
uninfected cells die ”naturally” (independent of infection) as a percentage of the uninfected population

1[ZWY14], [WVL17]
2[WVL16]
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(the term −DxX in eqn. 1). In eqn. 4.2 of [ZWY14] a 2-D-model is presented3 as well:

dX

dt
≡ Ẋ = 1−DX − (B +

AY

Y + C
)XY (4)

dY

dt
≡ Ẏ = (B +

AY

Y + C
)XY − Y (5)

A = 0.364 C = 0.823 D = 0.057,

The variables and coefficients have exactly the same biological meanings as in the 3-D-model but lacks
the ”general damage”. Here the infectivity function depends on Y instead. It is always multiplied by
both the number of infected and the uninfected cells, since the infected cells can spawn no more if
there are no healthy cells left, whereas without infected cells the healthy cells are unharmed by the
infectivity. Last but not least, the infected cells do not arise out of nowhere (i.e. the model does not
account for the initialization of the infection), so their growth rate is zero if their population is zero.
In section 2.2 we present a way of reducing the 3-D-model to the system (4,5).

2.2 Model reduction: 3D to 2D

We introduce the scaling R = εR̃, C = εC̃, τ = εt, ε = D−1
r , where ε << 1. The scaling is coherent

because C is small in eqns. 1 to 3 and Dr is big. Moreover, in eqn. 3, R reduces fast due to the high Dr,

so we interpret R as the fast variable and X and Y as the slow variables. Since AR
R+εC̃

= AεR̃
εR̃+εC̃

= AR̃
R̃+C̃

,

eqns. 1 to 3 can be rewritten as

dX

dτ
= 1−DxX − (B +

AR̃

R̃+ C̃
)XY (6)

dY

dτ
= (B +

AR̃

R̃+ C̃
)XY − Y (7)

ε
dR̃

dτ
= Y −DrεR̃ = Y − R̃ (8)

Since t = τ/ε, we know that d()
dτ = (̇)/ε , so we can write

Ẋ = ε(1−DxX − (B +
AR̃

R̃+ C̃
)XY ) (9)

Ẏ = ε((B +
AR̃

R̃+ C̃
)XY − Y ) (10)

˙̃R = Y − R̃ (11)

Now we are able to apply the Slow-Fast theory from [VP16], dividing our system in Layer and Reduced
problems. The layer problem is now obtained by setting ε = 0 in eqns 9 to 11:

Ẋ = 0 Ẏ = 0 ˙̃R = Y − R̃, (12)

The Jacobian of the fast subsystem with respect to the fast variables, i.e. the Jacobian of Y − R̃ with
respect to R̃, is easily seen to be -1, so the normal hyperbolicity condition is fulfilled. The critical
manifold C0 is the set of all fixed points of 12, i.e. the points for which R̃ = Y holds:

C0 : R̃ = Y ≡ h0(Y ) (13)

3The authors denoted the temporal variable with τ in eqns. (4,5), however we renamed it to t, as τ is reserved for
the slow-fast analysis in section 4.
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If we consider eqns 6 to 8 for ε = 0, we obtain the reduced problem with eqns 6 and 7 unchanged and

0 = Y − R̃ (14)

Now by Theorem 1 of [VP16], the fast variables can be expressed in terms of the slow variables :

R̃ = h0 +O(ε) (15)

In general, h0 depends on all the slow variables, while we can see from eqn. 13 that here it only
depends on Y . So we arrive at

R̃ = Y +O(ε), (16)

where the O(ε)-terms can be neglected. Then plugging R̃ = Y into eqns. 6 and 7, and renaming τ to
t and C̃ to C, we arrive at eqns. (4,5).

2.3 How a Homoclinic Orbit can explain viral blips

The viral blips separated by long periods of quiescence in viral reproduction correspond to a periodic
signal and thus a closed orbit in the phase portrait. The length of the quiescent sections is explained
by a relatively small distance of the phase point from a saddle equilibrium: The dynamics slow down
close to the saddle since an equilibrium is never reached before infinite time. The limit cycle is close
to (far from) the saddle in a region of the phase plane that corresponds to a low (high) viral load. In
the limit where the periodic orbit intersects with the saddle, it becomes a homoclinic orbit.

2.4 Classification of equilibria and bifurcation diagram

In system (4,5) we treat B as a bifurcation parameter. The first equilibrium (denoted E0) is found
by considering that Y = 0 implies Ẏ = 0. Then for Ẋ to be 0, X = D−1 has to be fulfilled. Thus

E0 = (D−1, 0) (17)

Similarly, by setting Ẋ = Ẏ = 0 and Y 6= 0, we get the two other equilibria4

E1 =

 √−2D(2AC+A+BC+B)+(A+BC+B)2+D2+A+BC+B+D

2D(A+B)

−
√

−2D(2AC+A+BC+B)+(A+BC+B)2+D2−A+B(C−1)+D

2(A+B)

 (18)

E2 =

−
√

−2D(2AC+A+BC+B)+(A+BC+B)2+D2+A+BC+B+D

2D(A+B)√
−2D(2AC+A+BC+B)+(A+BC+B)2+D2+A−B(C−1)−D

2(A+B)

 (19)

The Jacobian of system (4,5) is easily calculated to be

J =

−Y ( AY
C+Y +B

)
−D AC2X

(C+Y )2 −X(A+B)

Y
(
AY
C+Y +B

)
AXY (2C+Y )

(C+Y )2 +BX − 1

 (20)

For E0, the matrix J becomes simple and the eigenvalues are {−D, BD − 1}. This means that E0 is a
stable node for B < D and a saddle for B > D. The eigenvector that corresponds to the always stable
eigenvalue −D is (1, 0). This means that whenever E0 is a saddle, its stable subspace is tangential to
the X-axis. In fact it is even identical to the X-axis, as Y = 0 is a solution trajectory of system (4,5).

4The authors do not make a distinction between these two equilibria but denote the entirety of them by E1. In our
opinion, this is not precise enough, since E1 is affected by the transcritical, while E2 is affected by the Andronov-Hopf-
bifurcation.
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For E1 and E2 we calculated the Jacobian in these points and the respective eigenvalues with
Mathematica. However we found out that a closed-form expression of these eigenvalues is very lengthy,
so we did the analysis using plots of the eigenvalues in the complex plane. We also created scripts in
MATLAB and Mathematica that show the location and the stability of the equilibria as B changes.
There are two bifurcations mentioned by the authors and on e bifurcation found by us:

Firstly, in [ZWY14] a transcritical bifurcation is presented. By plugging B = D into eqn. 18, it
can easily be verified that in this case E1 coincides with E0. With the scripts we found that E1 is a
saddle for B < D and a stable node for B > D Moreover, E1 lies above (below) the X-axis for B < D
(B > D).

Secondly, the authors mentioned an Andronov-Hopf-bifurcation that happens at B ≈ 0.121. With
the scripts we found that E2 is an unstable (stable) focus for B < 0.121 (B > 0.121).

Lastly, it can be seen from eqns. 18 and 19 that the locations of E1 and E2 coincide when the term
under the square root becomes 0. Solving for B reveals that this is the case when B = −0.311765 and
B = −0.0250426. Thus a saddle-node-bifurcation happens at these values. For B between these two
values, the locations of E1 and E2 are not purely real-valued, so the two equilibria do not exist there.
However we did not consider B < 0 biologically relevant.

2.5 How the authors disprove a homoclinic orbit

The authors make their point based on E0. Their argumentation5:

[i ] E0 is a saddle with the vector (1, 0) spanning the stable subspace.

[ii ]The X-axis is not only tangential to the stable subspace but it actually is a solution curve of
the system (4,5).

[iii ] In a homoclinic orbit, the flow has to start on the unstable manifold of the saddle and come
back via its stable manifold (in forward time).

[iv ] because of argument [ii] the flow cannot join the X-axis if it started outside the X-axis (unique-
ness of solutions). ⇒ No homoclinic orbit.

We agree with this argumentation because a homoclinic orbit requires a saddle, and we have explained
in 2.4 that there is exactly one saddle in the system for each B < D and for each B > D. However,
for B < D the saddle is not in the point E0, so argument [i] breaks down here. Because of this, we
devote section 4 to proving that there can be no homoclinic orbit for B < D either.

3 Numerical Analysis

3.1 Bifurcation and periodic orbits analysis

The aforementioned bifurcations in section 2.4 are confirmed with the numerical simulations of the 2D
model. In figures 1a and 1b are compared the bifurcation diagrams of the authors and the diagram
generated with the software AUTO.

In fig. 1b the points 4,3 and 2 correspond to a Transcritical, Saddle-Node- and Andronov-Hopf-
bifurcation respectively. Both graphs have the same values, hence we were able to successfully repro-
duce their results.
The saddle-node bifurcation has a value of B = −0.0025, which is not biologically possible, since B
represents a population. Therefore this bifurcation is not longer analysed.
However, the Transcritical and Andronov-Hopf-bifurcations will play an important role in the dynam-
ics of the system and in our aim to find a Homoclinic orbit. The transcritical bifurcation is responsible
for changing the stability and location of the Saddle equilibrium needed to form the Homoclinic orbit.

5section 4.2.3 in [ZWY14]

4



(a) From [ZWY14] (b) AUTO generated

Figure 1: Bifurcation diagrams

On the other hand the Andronov-Hopf-bifurcationis responsible for the limit cycles which also are
needed for a potential Homoclinic bifurcation. In order to categorize the Andronov-Hopf-bifurcation,

Bif. Type B X Y
Saddle-Node -2.50426E-02 9.71367E+00 4.46321E-01
Transcritical 5.70000E-02 1.75439E+01 7.34166E-08

Andronov-Hopf 1.20986E-01 3.31506E+00 8.11042E-01

Table 1: Bifurcation values

the limit cycles were calculated for different values of B. In figure 2a the maximum Y with respect
the bifurcation parameter is represented. Of course, for the equilibrium points represented by the
red-and-green line (E0) and the black line (E1 and E2), the maximum Y is Y itself. However, the
blue line represents the maximum Y that each of the found periodic orbits reaches. The labels 9 to
19 correspond to such periodic orbits.
Now the type of Hopf-bifurcation is clear. To the left of the of the bifurcation we have a unstable
focus and limit cycles. To the right of the bifurcation we have a stable focus and no limit cycles. This
is a Supercritical Andronov-Hopf-bifurcation.
In fig. 2b, the periodic orbits are represented in the phase portrait. For small values of B we have

big orbits, which approach the shape of a Homoclinic orbit. As we increase B we get smaller orbits,
which finally disappear.

An important observation in the simulations is the following: the periodic orbits only appear
between a bit before the transcritical and the Hopf, i.e. from B ≈ 0.057 to B ≈ 0.12. We know what
makes them disappear, but what makes them appear in the first place? For answering this question
it is necessary to take a look closer at the Transcritical bifurcation.

3.2 Numerical evidence of Homoclinic orbit

The information relative to the periodic orbits can be seen in table 2. For small values of B and very
close to the left side of the Transcritical bifurcation there are big orbits with big periods. For bigger
values of B we have smaller orbits and smaller periods. However, the relation between the size and
the period is not linear, but rather exponential.
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(a) Periodic orbits in the bifurcation diagram
(b) Periodic orbits in the phase portrait

Figure 2: Periodic orbits for different values of B

Label B max X max Y Period
9 1.17837E-01 6.00893E+00 2.20656E+00 1.50378E+01
10 1.01042E-01 1.12065E+01 5.61789E+00 2.46433E+01
11 7.62963E-02 1.61601E+01 9.10364E+00 5.28157E+01
12 6.16998E-02 1.75190E+01 9.76291E+00 1.55451E+02
13 5.72371E-02 1.75438E+01 9.63886E+00 1.97765E+03
14 5.69999E-02 1.75439E+01 9.63113E+00 1.60562E+06
15 5.69999E-02 1.75439E+01 9.63111E+00 1.49245E+09
16 5.69999E-02 1.75439E+01 9.63112E+00 1.98269E+09

Table 2: Periodic orbits

The interesting orbits, as we said, are the ones close to B ≈ 0.057. In figures 3a and 3b we show the
dynamics of the orbit 16 and 12 very close to the region where the Transcritical bifurcation happens.
The green dot represents E1 while the blue is E0. In figure 3a, E1 is still a saddle and the periodic
orbit crosses through it. This is apparently a contradiction of uniqueness. However, the period, with
value t=1.98269E+09, is very big which implies that the orbit is actually infinitesimally close to the
equilibrium and we lack precision in our plots to show such distance.
In figure 3b the Transcritical has already happened (B > D). The periodic orbit in this case ap-
proaches E0 (blue dot), but does not touch it. This agrees with the fact that the periodic orbit does
not touch the x axis, but rather exponentially close to it, hence the orbit is not in the stable manifold
of E0. Once that it gets close enough to the point it is repelled, since now E0 is a saddle.

As aforementioned, the period increases exponentially with decreasing B. This is represented in
figure 4 where the period is plotted with respect to the bifurcation parameter. The plot suggests that
periodic cycles are ’born’ from infinite period orbits. The exponentially close distance between some
periodic orbits and E1 strongly suggests a Homoclinic Bifurcation very close to the left side
of B = 0.057.
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(a) Orbit 16, occurs before the Transcritical bifurcation (b) Orbit 12, occurs after the Transcritical bifurcation

Figure 3: Zoomed periodic orbits

Figure 4: Period of orbits with respect to B
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4 Analysis

0
0

Analysis Part 1
Analysis Part 2

Analysis Part 3

y

x
1/D

E2

E1

E0

Figure 5: Regions of the phase space that the rescaled systems in this section ’zoom into’

This analysis is divided into three parts. Each part focuses on a different region of the phase portrait
as indicated by figure 5. The second and third parts involve slow-fast analysis. The final goal is
to prove whether or not a homoclinic orbit exists. For convenience, X and Y from eqns. (4,5) are
renamed into x and y in this section.

In order to perform slow-fast analysis on the system of equations

ẋ = g(x, y)

ẏ = f(x, y)

the system is first scaled using 0 < ε << 1

ẋ = g(x, y)ε

ẏ = f(x, y),

ẋ = g(x, y)

εẏ = f(x, y)

The system is then analyzed in two singular limits known as the layer problem

ẋ = 0

ẏ = f(x, y)

and the reduced problem

ẋ = g(x, y)

0 = f(x, y)

with ε = 0.
In both cases the variables x and y must be scaled by ε. In the reduced problem the time t is scaled
by ε as well. Coefficients inside g and f may be scaled as well. It is important to ensure that the
system has normal hyperbolicity. This is equivalent to Dyf(x, y) 6= 0. After the analysis for ε = 0 is
done, the results are put together into one combined phase portrait where ε > 0 again. This analysis
gives a very accurate approximation to the original system.

4.1 Analysis Part 1

Rescale the B, D, and A coefficients:

B = bε2 D = ε2 A = aε
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System of equations with rescaled coefficients:

ẋ = 1− ε2x− (bε2 +
aεy

y + c
)xy (21)

ẏ = (bε2 +
aεy

y + c
)xy − y (22)

ε = 0

ẋ = 1 (23)

ẏ = −y (24)

x = t+ x0

y = e−ty0 (25)

Figure 6

The infected cell population density goes to zero; and the uninfected cell population density goes
to infinity. In order to obtain a more accurate system approximation slow-fast analysis is needed.

4.2 Analysis Part 2

Rescale x and y:

x̂ = εx̃

εŷ = ỹ

System of equations with rescaled variables:

˙̂x = ε2 − ε2x̂− (bε3 +
aε3ŷ

εŷ + c
)x̂ŷ (26)

˙̂y = (b+
aŷ

εŷ + c
)x̂ŷ − ŷ (27)

Layer Problem

ε = 0
˙̂x = 0 (28)

˙̂y = (b+
aŷ

c
)x̂ŷ − ŷ (29)

The set of equilibria for this system corresponds to the critical manifold

x̂ = x̂0 (30)

0 = (b+
aŷ

c
)x̂ŷ − ŷ (31)

ŷ =
c

x̂a
− bc

a
, ŷ = 0 (32)
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These two lines intersect at 1
b

Figure 7
Figure 8

Figure 9: Layer Problem Phase Portrait

The system has normal hyperbolicity along the critical manifold except at x̂ = 1
b .

Reduced Problem

τ = tε2, t = τε−2

The new system of equations is

˙̂x = 1− x̂− (bε+
aεŷ

εŷ + c
)x̂ŷ (33)

0 = (b+
aŷ

εŷ + c
)x̂ŷ − ŷ (34)

ε = 0
˙̂x = 1− x̂ (35)

0 = (b+
aŷ

c
)x̂ŷ − ŷ (36)

Critical manifold

ŷ =
c

x̂a
− bc

a
, ŷ = 0 (37)

Equilibria

x̂ = 1 (38)

ŷ = 0, ŷ =
c− bc
a

(39)
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Figure 10

Figure 11: b<1
Figure 12: b=1

Figure 13: b>1

Combined System

Figure 14: b<1 equilibrium 1 saddle, equi-
librium 2 stable node

Figure 15: b=1 one equilibrium
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Figure 16: b>1 equilibrium 1 stable node, equilibrium 2 saddle

4.3 Analysis Part 3

x̂ = εx̃

εŷ = ỹ

˙̃x = ε− ε2x̃− (bε2 +
aεỹ

ỹ + c
)x̃ỹ (40)

˙̃y = (bε+
aỹ

ỹ + c
)x̃ỹ − ỹ (41)

Layer Problem

ε = 0

˙̃x = 0 (42)

˙̃y =
ỹa

ỹ + c
x̃ỹ − ỹ (43)

The set of equilibria for this system corresponds to the critical manifold

˙̃x = x̃0 (44)

0 =
ỹa

ỹ + c
x̃ỹ − ỹ (45)

ỹ =
c

x̃a− 1
, ỹ = 0 (46)

Figure 17
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Figure 18: Layer Problem Phase Portrait

The system has normal hyperbolicity along the critical manifold except at x̃ = 1
a .

Reduced Problem

τ = tε, t = τε−1

The new system of equations is

˙̃x = 1− εx̃− (bε+
aỹ

ỹ + c
)x̃ỹ (47)

0 = (bε+
aỹ

ỹ + c
)x̃ỹ − ỹ (48)

ε = 0

˙̃x = 1− ax̃ỹ2

ỹ + c
(49)

0 =
x̃ỹ2a

ỹ + c
− ỹ (50)

Critical Manifold

ỹ =
c

x̃a− 1
, ỹ = 0 (51)

Equilibrium

x̃ =
1 + c

a
, ỹ = 1 (52)

Figure 19
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Figure 20: Reduced Problem Phase Portrait

Combined System

Figure 21: unstable node equilibrium

Final Result

For large x,

ỹ =
c

ax̃− 1
≈ c

ax̃

ỹ = εŷ ≈ cε

ax̂

ŷ ≈ c

ax̂

From the x̂ system, for small x,

ŷ =
c

ax̂
− bc

a
≈ c

ax̂

Therefore for small x and b<1 the critical manifold ŷ = c
x̂a −

bc
a of the x̂ system connects to the

critical manifold of the x̃ system.
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Figure 22

As we go backwards in t along the stable manifold of equilibrium 1 we reach an unstable node.
Therefore there can be no homoclinic orbit for b<1.

4.4 Numerical confirmation of the final result

In 4.1 to 4.3 we have combined all layer and reduced problems to get an approximation to the system’s
flow (fig. 22) In this section we confirm numerically that the actual system (4,5) - or its rescaled
counterparts - behave qualitatively the same as this combination and the flow is well approximated
by the critical manifold. We do this for the scaled system (26, 27) for a non-zero (but small) ε. We
use a MATLAB ODE solver to calculate a trajectory with an initial condition (IC) (x̂0, ŷ0).

4.4.1 The heteroclinic orbit

As can be seen from the final result above a heteroclinic orbit is formed between the two equilibria
for b<1. First a trajectory is selected which is close to this heteroclinic orbit. For this, we set the IC
near the equivalent of E1 (green point in fig. 23b) and integrate backwards in time. We use the values

b = 0.7 ε = 0.01 x̂0 = 0.99 ŷ0 = (ca−1 − bca−1) · 13

The result is seen in fig. 23b: the flow (black line) converges to the critical manifold (blue line)
fast and remains very close to it. As time goes by in backward direction, ŷ becomes too large to plot
in this scaling, so when ŷ = 10, i.e. ỹ = 0.1, is reached (black square), we switch to fig. 23a in order
to plot the rest of the trajectory in the ỹ-scaling.

As fig. 22 suggests for this initial condition, the flow in fig. 23 is attracted by the critical manifold
in backward time and converges to the equivalent of E2 (red dot).

.
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Figure 23: Trajectory (black) of the scaled system (26, 27) near the critical manifold (blue)

4.4.2 The periodic orbit

Next we reproduce a periodic orbit emanating from the Andronov-Hopf-bifurcation. We choose the
values

b = 1.1 ε = 0.1 x̂0 = 0.8 ŷ0 = 0.05

The result is seen in fig. 24. The IC (black square in 24a) is chosen between the hyperbola-arm of
the critical manifold (blue line) and the x̂-axis. For this IC, fig. 16 predicts an asymptotic approach
to ŷ = 0 that is fast in the beginning, combined with an increase in x̂. The trajectory (black line) in
fig. 24a behaves qualitatively in this way. It is allowed to cross the slow manifold (which is close to
the critical manifold and not shown in the figure) near the point x̂ = 1/b (cyan dot), because in 1/b
the normally hyperbolicity condition does not hold (see section 4.2) and the Slow-Fast analysis breaks
down around this point. After that, ŷ explodes, which is in accordance with fig. 16 for x > 1/b. The
flow then converges to the periodic orbit (the ”horizontal” and ”vertical” black line). The orbit does
not coincide with the equivalent of equilibrium E0 (magenta) although it comes close to it (24b).

Apparently, the periodic orbit returns through the x̂-axis but in reality it comes exponentially close
to it. As we demonstrated it can not cross it because of invariance. For a long time this periodic orbit
is contracting towards the x̂-axis, and after the point 1/b when the dynamics of the layer problem is
inverted, we should expect a similar period of expansion where it remains close to the axis. However,
the Unstable manifold of E0 must not be crossed. This explains why the orbit is repelled right before
E0 (and not later).
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Figure 24: Convergence to a periodic orbit in x̂, ŷ coordinates. Green: equivalent of E1

5 Conclusion

Analytically we demonstrated the non-existence of Homoclinic orbits after the Transcritical bifurcation
between E0 and E1. Homoclinic orbits need to departure from the unstable manifold of a saddle points
and come back through the stable manifold of the same point. After the Transciritcal bifurcation E0

is the saddle point. Its Stable manifold corresponds to the x axis which can never be crossed since it is
an invariant set, it is a solution of the system. Hence the flow can never departure from the unstable
manifold and come back through the stable manifold.

By means of Slow-Fast theory and rescaling we demonstrated in section 4 that a Heteroclinic
orbit connects E2 and E1 for B < D. Hence, the analytical analysis concludes that if there is any
Homoclinic orbit it has to be at the Transcritical bifurcation.

Numerically we got results which strongly suggest a Homoclinic orbit right before the Transcritical
bifurcation. The main arguments for it are: the generated periodic orbits get exponentially close to
the saddle E1 and the birth of the periodic orbits start with infinity period.

Both analyses, numerical and analytical, complement each other because the analytical rules out
the homoclinic for B > D and B < D while the numerical suggests it for B ≈ D. The part of the
analytical analysis that is responsible for the B < D case, namely section 4, deals with the limit
ε = 0, whereas in reality or in the numerical analysis 0 < ε << 1 is the case. This explains why in
the numerical analysis the homoclinic was found at a value of B that is slightly smaller than (and not
exactly equal to) D. We expect that Bhom (the value of B for which the homoclinic occurs) converges
to D from the left as ε 7−→ 0.
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